Given a function f(x) if,

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

then the normal limit will exist and

$$\lim_{x \to a} f(x) = L$$

Likewise, if

$$\lim_{x \to a} f(x) = L$$

then,

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

This fact can be turned around to also say that if the two one-sided limits have different values, i.e.,

$$\lim_{x \to a^{+}} f(x) \neq \lim_{x \to a^{-}} f(x)$$

then the normal limit will not exist.

This should make some sense. If the normal limit did exist then by the fact the two one-sided limits would have to exist and have the same value by the above fact. So, if the two one-sided limits have different values (or don't even exist) then the normal limit simply can't exist.

Let's take a look at one more example to make sure that we've got all the ideas about limits down that we've looked at in the last couple of sections.

Precalculus Limit Notes

Evaluating Limits Graphically and Numerically

I. Evaluating Limits Graphically

1. The function f has the graph shown. Using this graph, fill out the table below. If the limit does not exist, state this.

а	f(a)	$\lim_{x \to a^{-}} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x \to a} f(x)$
-2	-			
-1				
0	·			
1				
4				
5				
6				

II. Evaluating a limit numerically.

2(a) Let $f(x) = \frac{(x-1)(x+2)}{(x-3)}$ Use your calculator to fill in each chart and then evaluate each one-sided limit below.

X	2.9	2.99	2.999	2.9999
f(x)				

X	3.1	3.01	3.001	3.0001	
f(x)					

$$\lim_{x\to 3^-} f(x) =$$

$$\lim_{x\to 3^+} f(x)$$

(b) Does $\lim_{x\to 3} f(x)$ exist? Why or why not?